Detecting Syntactic Features of Translated Chinese¹

Hai Hu, Wen Li, Sandra Kübler Indiana University

2nd Workshop on Stylistic Variation at NAACL-HLT June 2018 Translatio Predictio

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

References

Detecting Translationese

Translated texts differ from original texts: translationese

- prefix mono- more frequent in Greek-to-English translations
- "modal verb + infinitive + past participle" more frequent in translated English (e.g. *must be taken*)

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Detecting Translationese

Translated texts differ from original texts: translationese

- prefix mono- more frequent in Greek-to-English translations
- "modal verb + infinitive + past participle" more frequent in translated English (e.g. must be taken)

ML-based classifiers can distinguish them

 SVMs: 98% accuracy w/ POS trigrams (Volansky et al. 2013), but:

- mostly lexical or shallow syntactic features
- few studies in Chinese

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

This Work

A classification task: translated vs. original

- in Chinese
- ► using syntactic features → capture deeper translationese
- interpret the features

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Dataset

Genre-balanced corpus (4 genres; 15 sub-genres) (Xiao and Hu 2015)

- ► LCMC: Lancaster Corpus of Mandarin Chinese
- ZCTC: Zhejiang Corpus of Translated Chinese

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Dataset

Genre-balanced corpus (4 genres; 15 sub-genres) (Xiao and Hu 2015)

- ► LCMC: Lancaster Corpus of Mandarin Chinese
- ► ZCTC: Zhejiang Corpus of Translated Chinese

# texts	news	prose	science	fiction	total
LCMC: original	88	206	80	111	485
ZCTC: translation	88	206	80	111	485

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Dataset

Genre-balanced corpus (4 genres; 15 sub-genres) (Xiao and Hu 2015)

- ► LCMC: Lancaster Corpus of Mandarin Chinese
- ► ZCTC: Zhejiang Corpus of Translated Chinese

# texts	news	prose	science	fiction	total
LCMC: original	88	206	80	111	485
ZCTC: translation	88	206	80	111	485

- Each text: around 2000 words
- Segmented and POS-tagged (Zhang et al. 2003)
- ▶ We removed urls, normalized punctuations, etc.

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Features

3 types:

- n-gram features: upper bound
- Constituency treelets: CFG rules, CFG subtrees
- Dependency graphs: variants of dependency graphs

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

n-gram features

With lexical information:

- character 1-3 grams
- word 1-3 grams

Without lexical information:

POS 1-3 grams

Franslation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Syntactic features

Parses from Stanford CoreNLP (Manning et al. 2014)

CFGR

Count of CFG rules:

- $\text{NP} \rightarrow \text{DP} \text{NP}$
- $ext{IP} o ext{NP} ext{VP} ext{PU}$

etc.

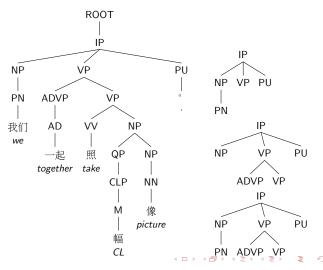
Subtrees

Part of **unlexicalized** constituent tree of depth 2/3, following data-oriented parsing paradigm (Bod et al. 2003).

Introduction

Experimental Setup

Classification Results


Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Syntactic features

Left: Example tree Right: All subtrees of depth 2 with IP as root

Translation Prediction

ntroduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

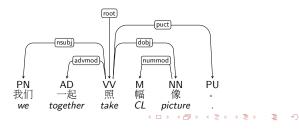
Related Work

Syntactic features

Variants of Dependency Graphs

- depTriple. [POS_head, relation, POS_dependent], e.g., [VV, nsubj, PN]
- depPOS. [POS_head, POS_dependent], e.g., [VV, PN].
- depLabel. Only the dependency relation, e.g., [nsubj].
- depTripleFuncLex. Same as depTriple; replace POS with lexical item when it's function word. e.g. [VV, nsubj, 我们(we)]

Introduction


Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Classifier and Feature Selection

- Support Vector Machines from scikit-learn (Pedregosa et al. 2011) and
- Information Gain for feature selection (Liu et al. 2016; Wong and Dras 2011).

Different numbers of features, ranging from 100 to 50, 000, reporting best results.

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and ⁼uture Work

Related Work

Results

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Features	F (%)
upperbound	
char <i>n</i> -grams(1-3)	95.3
word <i>n</i> -grams(1-3)	94.3
POS <i>n</i> -grams(1-3)	93.9
Unlexicalized syntactic features	
CFGR	90.2
subtrees: depth 2	90.9
subtrees: depth 3	92.2
depTriple	91.2
depPOS	89.9
depLabel	89.5
depTripleFuncLex	93.8
Combinations of syntactic features	
CFGR + depTriple	90.5
subtree_d2 + depTriple	91.0
POS n-grams + unlex syn features	
$POS + subtree_d2$	93.6
POS + depTriple	93.4
$POS + subtree_d2 + depTriple$	93.8
Char n-grams + unlex syn features	
char + subtree + depTriple	94.4
char + pos + subtree + depTriple	95.5

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Results for individual subtrees

Features	F (%)
CFGR NP	86.4
CFGR VP	85.6
CFGR IP	86.6
CFGR CP	68.4
subtrees NP d2	86.0
subtrees VP d2	85.6
subtrees IP d2	89.0
subtrees CP d2	71.6
subtrees NP d3	83.6
subtrees VP d3	86.7
subtrees IP d3	86.9
subtrees CP d3	77.7

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

References

Only CFG rules headed by NP (or VP, IP): fairly accurate!

Top 20 CFGR features

Rank	CFGR	Predicts
2.0	$VP \rightarrow VP PU VP$	original
5.0	$VP \to VP \; PU \; VP \; PU \; VP$	original
10.0	$NP \rightarrow NN$	original
10.2	$NP \to NN \; PU \; NN$	original
13.6	$IP \to NP \; PU \; VP$	original
14.8	$NP \to NN NN$	original
15	$NP\toADJP\;NP$	original
16.6	$IP \to NP \; PU \; VP \; PU$	original
18.2	$VP\toVV$	original
19.6	$VP \to VV \; NP$	original
1.0	$NP \rightarrow PN$	translated
4.0	$NP \rightarrow DP NP$	translated
6.2	$DP \to DT$	translated
6.6	$IP \to NP \; VP \; PU$	translated
6.8	$\text{PRN} \rightarrow \text{PU} \text{ NP} \text{ PU}$	translated
6.8	$NP\toNR$	translated
10.0	$CP \to ADVP \; IP$	translated
10.6	$NP \rightarrow DNP NP$	translated
16.4	$ADVP \to CS$	translated
16.8	$\text{DNP} \rightarrow \text{NP} \ \text{DEG}$	translated

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work Related Work

Top 20 CFGR features

More prominent in translated Chinese: NP \rightarrow PN: pronouns

NP → DP NP DP → DT: "该" (this), "这些" (these), "那些" (those)

PRN → PU NP PU: "加州大学洛杉矶分校(UCLA)"

 $NP \rightarrow DNP NP$ $DNP \rightarrow NP DEG: NP_1$ as the modifier of NP_2 Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Top 20 CFGR features

More prominent in translated Chinese: NP \rightarrow PN: pronouns

NP → DP NP DP → DT: "该" (this), "这些" (these), "那些" (those)

PRN → PU NP PU: "加州大学洛杉矶分校(UCLA)"

 $\text{NP} \rightarrow \text{DNP}$ NP $\text{DNP} \rightarrow \text{NP}$ DEG: NP_1 as the modifier of NP_2

- ▶ (NP (DNP (NP 美国) (DEG 的)) (NP 政治)). Gloss: "US DEG politics", i.e. US politics
- ▶ (NP (DNP (NP 舆论) (DEG 的)) (NP 谴责)). Gloss: "media DEG criticism", i.e. criticism from the media
- ► (NP (DNP (NP 脑) (DEG 的)) (NP 供血)). Gloss: "brain DEG blood supply", i.e. cerebral circulation one

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Worl

Top 20 CFGR features

More prominent in translated Chinese: NP \rightarrow PN: pronouns

NP → DP NP DP → DT: "该" (this), "这些" (these), "那些" (those)

PRN → PU NP PU: "加州大学洛杉矶分校(UCLA)"

 $\text{NP} \rightarrow \text{DNP}$ NP $\text{DNP} \rightarrow \text{NP}$ DEG: NP_1 as the modifier of NP_2

- DEG 的 is optional in all three cases, but sometimes it is required.
- Translaters seem to make the safer decision by always using DEG 的 after the NP modifiers.

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work Related Work

CFGR features headed by NP

Rank	NP CFGR	Predicts
2.0	$NP \to NN$	original
4.0	$NP \to NN NN$	original
5.4	$NP \to NN \; \mathbf{PU} \; NN$	original
6.2	$NP \to ADJP \ NP$	original
9.8	$NP\toNN\;\mathbf{PU}\;NN\;\mathbf{PU}\;NN$	original
9.8	$NP \to NP ADJP NP$	original
12.2	$NP \to NP \; PU \; NP$	original
12.6	$NP \to NN \; NN \; NN$	original
14.6	$NP \to NP NP$	original
17.0	$NP \to NP QP NP$	original
18.4	$NP \to QP \; NP$	original
1.0	$NP \to PN$	translated
4.2	$NP \to DP NP$	translated
6.0	$NP \to NR$	translated
7.2	$NP \to DNP NP$	translated
14.4	$NP \to QP \; DNP \; NP$	translated
16.2	$NP \to NP \; PRN$	translated
16.2	$NP \to NR \; \textbf{CC} \; NR$	translated
18.2	$NP \to NP \; \textbf{CC} \; NP$	translated

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work Related Work

CFGR features headed by NP

- in original: NP → NN **PU** NN e.g. "全院 医生、护士 最先挖掘的..." *doctors, nurses from the hospital first dug out...*

- in translated: NP \rightarrow NR **CC** NR NP \rightarrow NP **CC** NP e.g. "对经济和股市非常敏感" very sensitive to the economy **and** the stock market.

"、": Chinese specific punctuation

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Pronouns (PN):

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Pronouns (PN):

Previous studies have identified the overuse of pronouns in translation (He 2008; Xiao and Hu 2015).

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Pronouns (PN):

Previous studies have identified the overuse of pronouns in translation (He 2008; Xiao and Hu 2015).

But subject pronouns? Object pronouns?

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Pronouns (PN):

Previous studies have identified the overuse of pronouns in translation (He 2008; Xiao and Hu 2015).

But subject pronouns? Object pronouns? Can be explored w/ syntactic structures.

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Pronouns (PN):

Top subtree (depth=2) features involving pronouns (PN)

Rank	Feature	Function
1.0	(NP PN)	NA
2.2	(IP (NP PN) VP)	Subj.
5.2	(DNP (NP PN) DEG)	Genitive
6.6	(IP (NP PN) VP PU)	Subj.
38.0	(IP (NP PN) (VP VV VP))	Subj.
56.0	(IP (NP PN) (VP ADVP VP))	Subj.
77.0	(IP ADVP (NP PN) VP)	Subj.
81.0	(IP (NP PN) (VP ADVP VP) PU)	Subj.
81.0	(IP (ADVP AD) (NP PN) VP)	Subj.
93.5	(PP P (NP PN))	Obj. of prep.
93.5	(IP (NP PN) (VP VV IP))	Subj.
93.6	(VP VV (NP PN) IP)	Obj. of verb

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work Related Work

イロト イボト イヨト イヨト ニヨー わらの

Pronouns (PN):

Mostly subject pronouns.

Only 1 object of preposition.

Only 1 object of verb, but: (VP VV (NP **PN**) IP) = "make + pronoun + V." e.g. "让他们懂得…" (*make* **them** *understand* ...) **them** = object of "make" + subject of "understand". Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Pronouns (PN):

Top depTripleFuncLex features involving pronouns (PN)

Rank	Feature	Predicts	Gloss
5.4	VV_ NSUBJ _我	translated	
10.0	VV_ NSUBJ _他	translated	he
17.0	VV_ NSUBJ _他们	translated	they
24.0	VV_ NSUBJ _她	translated	she
27.6	他_CASE_的	translated	his
29.6	NN_NMOD:ASSMOD_他	translated	he
35.6	VV_ NSUBJ _你	translated	you
47.2	VV_ NSUBJ _它	translated	it
191.0	VV_DOBJ_它	translated	it

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work Related Work

Pronouns (PN):

Top depTripleFuncLex features involving pronouns (PN)

Rank	Feature	Predicts	Gloss
5.4	VV_ NSUBJ _我	translated	I
10.0	VV_ NSUBJ _他	translated	he
17.0	VV_ NSUBJ _他们	translated	they
24.0	VV_ NSUBJ _她	translated	she
27.6	他_CASE_的	translated	his
29.6	NN_NMOD:ASSMOD_他	translated	he
35.6	VV_ NSUBJ _你	translated	you
47.2	VV_ NSUBJ _它	translated	it
191.0	VV_DOBJ_它	translated	it

The first "DOBJ" feature ranks 191th.

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work Related Work

So what?

- Confirms previous results showing more pronouns in translated texts (He 2008)
- More pronouns in subj. rather than obj. position
- Chinese: pro-drop, English: non-pro-drop
- More importantly, pro-drop seems to happen more often in subject position in Chinese (c.f. Li and Thompson 1981)

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Conclusion and Future Work

Conclusion

- Syntactic features are good at detecting translations (90%+)
- Linguistically meaningful features are easily interpretable
- Interesting results concerning NPs and pronouns

Implication

Syntactic features can be applied to study styles of translationese, and allow for analysis of deeper structures.

Future Work

- More feature analysis
- Theory motivated features to (dis-)confirm previous hypotheses

Franslation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Thanks! Questions and comments?

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

lexical features

In fact, out of the top 30 character *n*-gram features that predict translations,

4 are punctuations, e.g., the first and family name delimiter " \cdot " in the translations of English names and parentheses "()";

11 are function words, e.g. "的" (particle), "可能" (*maybe*), "在" (*in/at*), and many pronouns (*he*, *I*, *it*, *she*, *they*);

all others are content words, where "斯" (s) and "尔" (r) are at the very top, mainly because they are common transliterations of foreign names involving "s" and "r", followed by "公司" (company), "美国" (US), "英国" (UK), etc.

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Related Work

Detecting Translationese w/ ML Classifiers

Baroni and Bernardini (2005): translated vs. ori. Italian. Features: wordform, lemma, pos, mixed. SVMs: 85.2% F-measure > human judgment.

Koppel and Ordan (2011): "Englishes" translated from It., Fr., Es., De., Fin. can be distinguished. Features: counts of function words \rightarrow 92.7% accuracy

Volansky et al. (2013): translated vs. ori. English. Features: 33 feature sets based on 4 translation universals. TTR \rightarrow 76%; mean word length \rightarrow 66%. Character ngrams, contextual function words \rightarrow 100%. Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Related Work

Detecting Translationese for Chinese

Europeanized/translational Chinese has been studied for decades, but no text classification task has been done to our knowledge.

- First discussed in Wang (1944); case study of a novel (Kubler 1985)
- Corpus study (He 2008); compared frequencies of mostly lexical features (Xiao and Hu 2015)
- More pronouns, passives, connectives and certain affixes in translated Chinese

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Related Work

Syntactic Features

Mostly **lexical features** in translation studies. However, in Native Language Identification, syntactic features are popular:

- CFG rules + n-grams improve accuracy (Bykh and Meurers 2014; Wong and Dras 2011)
- TSG rules are also helpful (Post and Bergsma 2013; Swanson and Charniak 2012)

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

References I

- Baroni, M. and S. Bernardini (2005). A new approach to the study of translationese: Machine-learning the difference between original and translated text. *Literary and Linguistic Computing* 21(3), 259–274.
- Bod, R., R. Scha, K. Sima'an, et al. (2003). *Data-oriented parsing*. CSLI Publications.
- Bykh, S. and D. Meurers (2014). Exploring syntactic features for native language identification: A variationist perspective on feature encoding and ensemble optimization. In *Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics*, pp. 1962–1973.

He, Y. (2008). A Study of Grammatical Features in Europeanized Chinese. Commercial Press. Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

References II

- Koppel, M. and N. Ordan (2011). Translationese and its dialects. In *Proceedings of the 49th Annual Meeting of the ACL: HLT*, pp. 1318–1326.
- Kubler, C. C. (1985). A study of Europeanized grammar in modern written Chinese, Volume 10. Student Book Company.
- Li, C. and S. Thompson (1981). A functional reference grammar of Mandarin Chinese. Berkeley: University of California Press.

Liu, C., W. Li, B. Demarest, Y. Chen, S. Couture,
D. Dakota, N. Haduong, N. Kaufman, A. Lamont,
M. Pancholi, et al. (2016). IUCL at SemEval-2016 task 6:
An ensemble model for stance detection in twitter. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval), pp. 394–400.

Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

References III

Manning, C., M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky (2014). The Stanford CoreNLP Natural Language Processing Toolkit. In Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay (2011). Scikit-learn: Machine learning in
Python. *Journal of Machine Learning Research 12*, 2825–2830.

Post, M. and S. Bergsma (2013). Explicit and implicit syntactic features for text classification. In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics*, Volume 2, pp. 866–872. Translation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

References IV

- Swanson, B. and E. Charniak (2012). Native language detection with tree substitution grammars. In *Proceedings* of the 50th Annual Meeting of the ACL, pp. 193–197.
- Volansky, V., N. Ordan, and S. Wintner (2013). On the features of translationese. *Digital Scholarship in the Humanities* 30(1), 98–118.
- Wang, L. (1944). Theory of chinese grammar.
- Wong, S.-M. J. and M. Dras (2011). Exploiting parse structures for native language identification. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1600–1610.
- Xiao, R. and X. Hu (2015). *Corpus-Based Studies of Translational Chinese in English-Chinese Translation*. Springer.

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work

Zhang, H., H. Yu, D. Xiong, and Q. Liu (2003). HHMM-based Chinese lexical analyzer ICTCLAS. In Proceedings of the Second SIGHAN Workshop on Chinese Language Processing, pp. 184–187. Franslation Prediction

Introduction

Experimental Setup

Classification Results

Linguistic Interpretation of Features

Conclusion and Future Work

Related Work