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Abstract

This paper shows how to take parse trees in CCG
and algorithmically find the polarities of all the
constituents. Our work uses the well-known po-
larization principle corresponding to function ap-
plication, and we have extended this with princi-
ples for type raising and composition. We pro-
vide an algorithm, extending the polarity mark-
ing algorithm of van Benthem. We discuss how
our system works in practice, taking input from
the C&C parser.

Main Objective

Polarize sentences to get inferences. For example:

Raw: Every dog scares at least two cats.
Polarized: Every dog↓ scares ↑ at least two↓ cats↑.
Knowledge base: cats ≤ animals, beagles ≤
dogs, scares ≤ startles.
Inference: Every beagle startles at least one ani-
mal.

Pipeline

raw sent.

tokenized sent.

CCG parse tree

polarized tree

inferences

knowledge

tokenizer [8]

C&C parser [3]

getMono

infer

This work: getMono and infer

Theory

1. Meaning of d: ↑ and ↓
P and Q are preorders as used in [9, 6].

A function f : P → Q is monotone (↑ or order
preserving) if p ≤ q in P implies f (p) ≤ f (q) in Q.
And f is antitone (↓ or order inverting) if p ≤ q in
P implies f (q) ≤ f (p) in Q.
E.g. every dog↓ barks↑ means:
For all models M, all m1 ≤ m2 in Pet (for dog),
and all n1 ≤ n2 in P(et)t (for barks), we have in 2

that [[every]] m2 n1 ≤ [[every]] m1 n2.

2. Meaning of m: + and −
We incorporate monotonicity information into the
types. Our lexicon comes with order-enriched se-
mantic types, e.g.:
every : N −→ NP+; no : N −→ NP−

some : N +→ NP+; most : N ·→ NP+

where N = e→ t, NP+ = (e→ t) +→ t

Rules

Our algorithm getMono has two steps, similar to
van Benthem’s algorithm [2]:
1. mark(): leaves→ root (going down).
2. polarize(): root→ leaves (going up).
Both operations follow the rules below.

(x m→ y)d xmd

yd
>

(x m→ y)d (y n→ z)md

(x mn−→ z)d B xmd

((x m→ y) +→ y)d T

(e→ x)=

(NP +→ x)= I
(e→ x)d

(NP+ +→ x)d J
(e→ x)flip d

(NP− +→ x)d K

H
HHH

HHH
HHHH

m

n + − ·

+ + − ·
− − + ·
· · · ·

@
@
@
@
@@

d

m + − ·

↑ ↑ ↓ =
↓ ↓ ↑ =

flip ↑ = ↓ flip ↓ = ↑

For example: Fido chased Felex
Fido : et +→ t chased : e +→ et

Fido chased : e +→ t
B →

Fido↑ : et +→ t chased↑ : e +→ et
Fido chased↑ : e +→ t

B

A Complete Example: no dog chased no cat

no : np/n dog : n
no dog : np

>
chased : (s\np)/np

no : np/n cat : n
no cat : np >

chased no cat : s\np
>

no dog chased no cat : s
<

(a) Syntactic tree from C&C parser

no
N −→ NP−

dog
N

no dog : NP
>

chased
NP +→ (NP +→ S)

no
N −→ NP−

cat
N

no cat : NP >

chased no cat : NP→ S
>

no dog chased no cat : S
<

(b) Semantic tree

no : N −→ NP− dog : N
no dog : NP−

>

chased
NP− +→ (NP− +→ S)

no : N −→ NP− cat : N
no cat : NP−

>

chased no cat : NP− +→ S
>

no dog chased no cat : S
<

(c) After mark()

no↑ : N −→ NP− dog↓ : N
no dog↑ : NP−

>

chased↑
chased↓ : NP− +→ (NP− +→ S) K no↓ : N −→ NP− cat↑ : N

no cat↓ : NP−
>

chased no cat↓
>

chased no cat↑ : NP− +→ S
K

no dog chased no cat↑ : S
<

(d) After polarize()

Current Capabilities

No↑ man↓ walks↓

Every↑ man↓ and↑ some↑ woman↑ sleeps↑

Every↑ man↓ and↑ no↑ woman↓ sleeps=

If↑ some↓ man↓ walks↓, then↑ no↑ woman↓ runs↓

Every↑ man↓ does↓ n’t↑ hit↓ every↓ dog↑

No↑ man↓ that↓ likes↓ every↓ dog↑ sleeps↓

Most↑ men= that= every= woman= hits= cried↑

Every↑ young↓ man↓ that↑ no↑ young↓ woman↓

hits↑ cried↑

Inference [5]

Input: a polarized sentence S, a knowledge base K.
Output: inferences of S based on K.
Knowledge base K: a set of ≤ pairs:
cat ≤ animal old dog ≤ dog

Algorithm 0.1: INFERBYSUBSTITUTION(S,K)

for each Constituent C ∈ S

do



if C ∈ pair P in K where polarity matches

then

replace C with C’ in P
add new sentence S’to S.inferences

Inference: An Example

Suppose we have this polarized sentence S:
every↑ man↓ chased↑ some↑ cat↑ .↑

and a knowledge base K:
cat ≤ animal
old dog ≤ dog
young man ≤ man

every man ≤ John ≤ some man
chased some cat ≤ liked every dog
every ≤ most

Using INFERBYSUBSTITUTION, we can get:

After 1 substitution

every↑ young↓ man↓ chased↑ some↑ cat↑

most↑ man= chased↑ some↑ cat↑

John↑ chased↑ some↑ cat↑

every↑ man↓ liked↑ every↑ dog↓

After 2 substitutions
every↑ young↓ man↓ chased↑ some↑ animal↑

John↑ liked↑ every↑ dog↓

every↑ man↓ liked↑ every↑ old↓ dog↓

After 3 substitutions
some↑ man↑ chased↑ some↑ animal↑

John↑ liked↑ every↑ old↓ dog↓

every↑ young↓ man↓ liked↑ every↑ old↓ dog↓

Conclusion

We have shown how to polarize a CCG parse tree
and make simple inferences based on the result. Our
paper relates to other work with similar aims, but
not in the CCG context, e.g. [7, 10], as well as other
work on natural logic [4, 11, 1].
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