
An Automatic Monotonicity Annotation Tool Based on CCG Trees

Hai Hu and Larry Moss {huhai,lmoss}@indiana.edu

Introduction Despite the importance of monotonicity in logic and linguistic semantics, there have been few
attempts to automatically annotate monotonicity information in natural language. In this paper, we present
a tool that automatically annotates monotonicity information (i.e. polarity) at the word and constituent
level at the same time, based on parse trees in Combinatory Categorial Grammar (CCG) [4]. Then we
compare our tool’s performance with another tool in the literature, NatLog [2], on a small hand-crafted
dataset involving various monotonicity phenomena. We highlight the issues and difficulties in automatic
monotonicity tagging.

Our tool In essence, our tool uses an extension of the algorithm described in [5] which only deals with
the Ajdukiewicz/Bar-Hillel (AB) variant of Categorial Grammar (i.e. application rules (>) and (<)). That
is, our tool can handle not only application rules, but type-raising and composition in CCG [4] (the t and
b rules in Figure 1).

px
m
Ñ yqd xmd

yd
>

px
m
Ñ yqd py

n
Ñ zqmd

px
mn
ÝÑ zqd

b
xmd

ppx
m
Ñ yq

`
Ñ yqd

t

Figure 1: This figure contains core rules of the markings and polarities. The letters m and n stand for one
of the markings `, ´, or ¨; d stands for Ò or Ó (but not “). Some rules are omitted to save space. See the
following charts for the operations m, d ÞÑ md and m,n ÞÑ mn.

In simple terms, we first obtain a CCG parse tree of the input sentence by calling existing CCG parsers.

Then our tool works in two steps: 1) mark, which adds markings (
`
Ñ,

´
Ñ and

¨
Ñ) for each node in the tree

from leaf to root, and 2) polarize, which populates the polarities (Ò, Ó and “) from root to leaf. The rules
for the two steps are summarized in the following charts. The chart on the left is for combining two markings
m and n, and the one on the right is for combining a marking m and a polarity d, obtaining a new polarity.

PPPPPm
n ` ´ ¨

` ` ´ ¨

´ ´ ` ¨

¨ ¨ ¨ ¨

PPPPPd
m ` ´ ¨

Ò Ò Ó “

Ó Ó Ò “

flip Ò “ Ó flip Ó “ Ò

It is worth noting that our lexicon is manually coded with monotonicity information for quantifiers and

other downward-entailing operators, e.g. every : N
´
Ñ NP`; some: N

`
Ñ NP`; no: N

´
Ñ NP´; most :

N
¨
Ñ NP`; without : NP

´
Ñ ppS

`
Ñ NPq

`
Ñ pS

`
Ñ NPqq; refuse: pS

`
Ñ NPq

´
Ñ pS

`
Ñ NPq. Because of

space limitation, we will not give formal definition of the markings, but informally, a ´ sign means the
monotonicity/polarity of its argument will be flipped. An example of the two steps in our algorithm is
illustrated in the following tree every cat that Fido chased ran.

everyÒ : N
´
Ñ NP`

catÓ : N

thatÓ : pNP`
`
Ñ Sq

`
Ñ pN

`
Ñ N q

FidoÓ : e

FidoÓ : petq
`
Ñ t

t
chasedÓ : e

`
Ñ et

Fido chasedÓ : et
b

Fido chasedÓ : NP`
`
Ñ S

j

that Fido chasedÓ : N
`
Ñ N

>

cat that Fido chasedÓ : N
<

every cat that Fido chasedÒ : NP`
>

ranÒ : e
`
Ñ t

ranÒ : NP`
`
Ñ t

j

every cat that Fido chased ranÒ : S
<

One advantage of our system is that we obtain monotonicity at the constituent level as well, e.g., every
cat that Fido chased receives Ò while cat that Fido chased has Ó. This is not possible in NatLog [2].

1



Evaluation We hand-crafted 55 sentences containing a wide range of quantifiers, mixed with conditionals
and conjunctions (see below) to test the system’s polarization ability. We manually annotate the monotonic-
ity labels in each sentence and then test our system, as well as the NatLog system in [2]1.

Sentence Linguistic phenomenon

SomeÒ ratÒ seesÒ everyÒ squirrelÓ some/every
MostÒ dogs“ chaseÒ someÒ catÒ most/some
ManyÒ people“ likeÒ dogsÒ asÒ petsÒ many
AtÒ leastÒ sevenÓ fishÒ diedÒ yesterdayÒ inÒ MoroccoÒ at least n
MyÒ parentsÒ saidÒ IÒ couldÒ haveÒ threeÓ candiesÓ numbers
Three“ outÓ ofÓ five“ dentists“ recommendÒ thatÒ theirÓ patientsÓ brushÒ

theirÓ teethÓ atÒ leastÒ fourÓ timesÒ aÒ dayÒ
numbers

IfÒ everyÓ catÒ runsÓ ,Ò thenÒ someÒ dogÒ runsÒ alsoÒ conditional
AÒ dogÒ whoÒ ateÒ twoÓ rottenÓ biscuitsÓ wasÒ sickÒ forÒ threeÓ daysÓ relative clause/numbers
UrsulaÒ refusedÒ toÒ singÓ orÓ danceÓ disjunction

Table 1: Example sentences in our evaluation dataset, with hand-annotated monotonicity information.

First, out of the 55 sentences, the CCG parser [1] gave wrong parse trees for 11 of them. The NatLog
system depends on dependency parses given by the Stanford dependency parser, which produces 9 wrong
parses. Since both systems make use of parse trees, both are in general unlikely to get a correct polarity
annotation if the parse is problematic. Next, we evaluate the accuracy of polarity annotation on both the
token level and the sentence level, same as how part-of-speech tagging evaluation is done [3]. We performed
one evaluation on all tokens, another only on content words (plus determiners such as some and every and
numbers, which are important for making inferences); the rationale is that it is hard to say what correct
polarity we should give to the function word as in ManyÒ people“ likeÒ dogsÒ asÒ petsÒ. Most of the useful
polarity information for inference is on content words.

token-level sentence-level
system majority NatLog ours majority NatLog ours

accuracy (all tokens) 51.0 70.8 76.0 5.4 28.0 44.6
accuracy (content words + determiners + numbers) 49.1 69.4 78.2 5.4 28.6 50.0

Clearly, both systems are doing much better than the majority baseline which assigns Ò to every token.
Now the mistakes of the two systems. NatLog seems to consider “many” and “most” to be non-monotonic
on both the first and second argument; it also treats “the” as “some” in that both of its arguments receive
Ò polarity, which is problematic. Negation is sometimes handled wrongly in NatLog where the NP in “NP
doesn’t VP” is tagged Ó. Both systems are unable to disambiguate the universal and existential “any”, with
NatLog tagging all “any” as a universal “any” and our system tagging it as the existential “any”. Our system
also has a hard time recognizing multi-word expressions such as “except for”. While we can correctly tag
conditionals and complements of verbal downward entailing operators (e.g., “refuse”) as Ó, NatLog seems
incapable in such cases. Overall, our system outperforms NatLog on this small evaluation dataset.

We intentionally put some hard examples involving numbers into the evaluation set, e.g., the second to
last example in Table 1. The difficulty lies in determining whether the numbers are to be interpreted as at
least n, at most n or exactly n. The correct polarities often cannot be determined without an understanding
of the context and some world knowledge. This is what future work needs to address.

References

[1] M. Lewis and M. Steedman. A* CCG parsing with a supertag-factored model. In Proceedings of EMNLP, pages
990–1000, 2014.

[2] B. MacCartney. Natural Language Inference. PhD thesis, Stanford University, 2009.
[3] C. D. Manning. Part-of-speech tagging from 97% to 100%: is it time for some linguistics? In International

conference on intelligent text processing and computational linguistics, pages 171–189. Springer, 2011.
[4] M. Steedman. The Syntactic Process. The MIT Press, Cambridge, MA, 2000. ISBN 0-262-19420-1.
[5] J. van Benthem. Essays in Logical Semantics. Reidel, Dordrecht, 1986.

1We use the natlog annotator in Stanford CoreNLP 3.9.2: https://stanfordnlp.github.io/CoreNLP/natlog.html

2

https://stanfordnlp.github.io/CoreNLP/natlog.html

